ABSTRACT

Tuberculosis (TB) is a curable and preventable disease caused by infection with mycobacteria from the Mycobacterium tuberculosis complex. M. tuberculosis can cause disease in any organ of the body, but TB infection of the lung is significant because it spreads via respiratory droplets; this makes it a major public health burden (despite the availability of definitive treatment for more than five decades). A majority of deaths due to tuberculosis occur as a result of pulmonary disease [3]. Nowadays, TB became a huge global issue for the both developing and developed countries. Due to spreading of multi drug-resistant forms and variety of symptoms it remains to be a huge burden on global health care system [4,5]. The variety of TB forms and difficulties in differential diagnostics results in mistakes among clinicians in treatment of TB patients [6,7]. All of those issues results in developing of the new diagnostic methods and tests which already implemented into some countries’ health care systems for improvement of TB diagnosis [8]. However, those methods should receive availability for all health care systems globally which will provide higher rates of correct diagnosis of the TB.

INTRODUCTION

Tuberculosis (TB) is a curable and preventable disease caused by infection with mycobacteria from the Mycobacterium tuberculosis complex. M. tuberculosis can cause disease in any organ of the body, but TB infection of the lung is significant because it spreads via respiratory droplets; this makes it a major public health burden (despite the availability of definitive treatment for more than five decades). A majority of deaths due to tuberculosis occur as a result of pulmonary disease [3]. Nowadays, TB became a huge global issue for the both developing and developed countries. Due to spreading of multi drug-resistant forms and variety of symptoms it remains to be a huge burden on global health care system [4,5]. The variety of TB forms and difficulties in differential diagnostics results in mistakes among clinicians in treatment of TB patients [6,7]. All of those issues results in developing of the new diagnostic methods and tests which already implemented into some countries’ health care systems for improvement of TB diagnosis [8]. However, those methods should receive availability for all health care systems globally which will provide higher rates of correct diagnosis of the TB.

RISK FACTORS FOR INFECTION

Impaired Host Immunity

Certain lifestyles predispose exposed people to tuberculosis infection. These include factors that reduce host immunity. Malnutrition also results in impaired cellular responses to mycobacterial antigens as well as reduced immunoglobulins and innate immune factors [9]. Excessive alcohol consumption has been shown to acutely impair alveolar macrophage function as well as producing a fall in immunoglobulin when end-stage liver disease occurs. Recreational drug abusers are also at high risk of TB through a complicated host—environmental interface [12].

Host Genetics

Genetics has been shown to have an important role in host defense and susceptibility to TB. There is a critical role for interleukin-12 (IL-12), interferon gamma (IFN-γ) and tumor necrosis factor (TNF) in the formation and function of the tuberculous granuloma. Recent studies have shown that variants of the cytokine-inducible SRC homology 2 domain protein Chromogenic in Situ Hybridization (CISH) allele (necessary for IL-12 signaling) have been associated with an increased susceptibility to TB [13,14]. Families with polymorphisms of IL-12, IFN-γ, TNF48 or their receptors have excessive susceptibility to mycobacterial infections (usually detected by excessive susceptibility to BCG disease).

Immunosuppressive and Immunomodulatory Drugs

Immune modulation is a rapidly expanding arm of the therapeutic armamentarium in developed countries. In particular, the selective immune deficiency induced by TNF antagonist medication (Infliximab) used for rheumatoid disease and seronegative arthropathies has resulted in exquisite susceptibility to tuberculosis in treated patients [15]. This has led to guidelines suggesting that patients contemplating this treatment should be fully evaluated for latent tuberculosis and...
treated with six months of anti-tuberculosis chemotherapy in case of doubt [16].

Close Contact with Individuals with Active Tuberculosis

The single most important risk factor for acquisition of tuberculosis is contact with a person who has active tuberculosis, particularly sputum smear positive (open) pulmonary tuberculosis. The most affected groups are those with recent travel to highly endemic areas or those who have had contact with people who have recently arrived from endemic areas.

DIAGNOSTIC METHODS

Radiological method

The diagnosis of TB starts with detection of symptoms which appeared. Such symptoms as subfebrile temperature for over 2 weeks and coughing which lasts for the same period or more as well as fatigue and weight loss altogether are valuable reasons to assume the appearance of TB [17]. The basic radiology method of early diagnosis for the lung TB is a chest X-ray. Although this method is not specific for the TB diagnosis it allows to monitor the current condition of the TB patients as well as to prevent or reveal complications. Due to the fact that X-ray is not specific diagnostic procedure it has to be followed up with sputum testing. The chest CT is another one radiological method for the TB diagnosis. It could provide much more detailed information about the all the lesions as well as complications which could have been missed during the chest X-ray [18]. On the CT scans TB could be visualized with such signs as pulmonary cavitation, branching opacities or “tree-in-bud” pattern which could be described as connection of small centrilobular nodules of soft tissue attenuation with multiple branching linear structures. Though “tree-in-bud” symptom could be detected in various conditions except the lung TB but this symptom in association with cavitation or nodular opacities and with the classic TB symptoms could be evaluated as a confirmation of the pulmonary TB diagnosis [19].

AFB smear microscopy and culture

The most frequent and useful test for the pulmonary TB diagnosis is sputum test. One of its biggest advantages is availability – it could be provided in most primary health care laboratories [20]. It is highly specific for the Pulmonary TB and the rates of identification with the using of two consecutive sputum specimens are mostly very high (up to 95–98 %) [21, 22] among smear-positive TB patients. Nowadays, WHO recommends two consecutive sputum specimens testing among drug-resistant TB patients. While the resources are limited the Ziehl-Neelsen stained is the most common method. It is a highly specific method in TB diagnosis, however the levels of sensitivity could be very variable (20–80%). The using of conventional fluorescence microscopy has much higher sensitivity in comparison with Ziehl-Neelsen microscopy although the limitations for using of this method are the requirement for the special expensive equipment [23].

However, there are some other challenges during the TB diagnostics. One of the is the diagnostic of drug-resistant strains which cannot be identified without the using of some other techniques which were described above. In such case the drug susceptibility testing (DST) should be used. For this method the liquid media is the best choice for culturing of the M. tuberculosis bacilli because it allows to detect TB with the rifampicin resistance alone or in combination with isoniazid [28,29]. It is conducted with the using of polymerase chain reaction (PCR) amplification of specific regions of the gene which are responsible for the drug-resistance. The using of this method showed very high sensitivity (more than 97%) and specificity (>99%) for detecting rifampicin resistance alone or in combination with isoniazid (sensitivity >90%, specificity >95%). In M. tuberculosis isolates and in sputum positive sputum specimen [30]. Despite the very good results which were listed above this test should still be used with the culturing of M. tuberculosis and further DST because of the requirement of second-line anti-TB drugs using.

Xpert MTB/RIF

One of the most recent methods in TB diagnostics is an Xpert MTB/RIF test. It allows to detect TB with the rifampicin resistance from sputum in just 2 hours after collection. The biggest advantage of the Xpert MTB/RIF test is simplicity in comparison with solid media. As a result, liquid media could contribute significantly to the TB diagnostics as a faster and more accurate way of diagnostics. The only pros for this method are higher costs for its conduction and also its technical complexity is much higher in comparison with the using of solid media.

Molecular methods

The detection of TB could also be performed with the using of Nucleic acid amplification tests (NAATs). In comparison with the AFB smear microscopy this test is very useful in AFB smear-negative, culture-positive cases (it is up to 80% more sensitive). Moreover, it could provide much faster detection of M. tuberculosis in comparison with culturing methods in patients with pulmonary TB [24,25,26]. However this type of testing should not be used as the routine basis for patients with low clinical suspicion of TB, because the PPV of NAAT is less than 50% in such cases [27].

Line probe assay

In order to provide much faster detection drug-resistant cultures the Line probe assay method was developed. It allows to detect specific gene markers associated with rifampicin resistance alone or in combination with isoniazid [28,29]. It is conducted with the using of polymerase chain reaction (PCR) amplification of specific regions of the gene which are responsible for the drug-resistance. The using of this method showed high sensitivity (more than 97%) and specificity (>99%) for detecting rifampicin resistance alone or in combination with isoniazid [28,29].

CLINICAL FEATURES OF PRIMARY INFECTION

Primary TB usually presents as a low-grade, febrile illness lasting for two to three weeks with ‘other’ symptoms in less than 25% of patients. Other symptoms include pleurisy pain, fatigue, cough, arthralgia and pharyngitis. Examination reveals chest pain to palpation and features of an effusion.

Typical Clinical Outcome

The initial focus of infection becomes infiltrated with lymphocytes and activated macrophages. Ipsilateral hilar lymph nodes (site of antigen presentation) become enlarged. The combination of a peripheral lung infection and enlarged lymph nodes is then called a Ghon complex. Successful containment of the infection may result in residual scarring of the primary lung infection site and calcification after some years (Ghon focus). The clinical diagnosis of primary infection is therefore made on the basis of an altered skin test and radiological features of lymphadenopathy or middle and lower lobe infiltration.

Diagnostic algorithms of pulmonary TB

Smaer-positive pulmonary TB

Each individual with suspected TB should go through the medical examination. The basic test is a chest X-ray which then should be followed with rational diagnostic procedures based on its results. The next step should be the multiple sputum examination (at least two specimens should be examined) [36]. After the sputum test the NAA tests could be performed in order to distinguish M. tuberculosis and nontuberculosis mycobacteria (NTM) a
sputum smear-positive person. If the results of both AFB and NAA tests are positive, it allows to confirm the TB diagnosis. Despite all the new possibilities and conveniences which new diagnostic methods could provide the culture and conventional DST still remains as ones of the most necessary tests in confirmation of Tb diagnosis [25, 37, 38, 39].

TREATMENT

Early diagnosis and effective anti-tuberculous chemotherapy will result in a cure in most cases. Standard short-course chemotherapy for drug-susceptible tuberculosis consists of four drugs (rifampicin, isoniazid, pyrazinamide and ethambutol-intense four-drug regime) for two months followed by two drugs (rifampicin and isoniazid-consolidation two-drug phase) for a further four months. In sputum-positive cases, the patient will be rendered non-infectious after two weeks of appropriate therapy, although dead mycobacteria may still be visible in the sputum for some weeks following initiation of therapy. Fixed drug combinations allow simpler prescribing and may increase patient compliance but are less flexible should side effects become a problem [32, 33].

PREVENTION AND INDICATION

The preventive treatment or treatment of latent tuberculosis infection (LTBI) is recommended for individuals who are infected with Mycobacterium tuberculosis and those who have an increased risk of reactivation. Considering the statistical risk of reactivation, the indications for preventive therapy are, by decreasing order of magnitude: • HIV-positive patients with a positive tuberculin skin test (or positive interferon-γ test) • Recent contact with smear-positive cases of TB with tuberculin conversion (or positive interferon-γ test) • Children with a positive tuberculin skin test (or positive interferon-γ test) • Subjects with fibrotic lesions compatible with untreated pulmonary TB • Subjects with natural, viral or drug-induced immune depression and with a positive tuberculin skin test (or positive interferon-γ test) [28, 37].

CONCLUSION

Tuberculosis infection and disease are not the same. One-third of the world's population is infected, but the majority do not experience disease. Transmission of tuberculosis is person-to-person by droplet infection. Patients with cough and cavitary disease are the most infectious. Close contacts and people with immunodeficiency are at greatest risk of infection. In Primary disease, Mycobacterium tuberculosis infects an immunologically naive host and immune responses occur for the first time. Often this is asymptomatic but progressive disease can result, particularly in children or adults with immunodeficiency. Post-primary disease is when M. tuberculosis causes symptoms either by reactivation of primary infection or reinfection with a new strain. Symptoms are due to the combined effect of pathogen replication and host response. The diagnosis of tuberculosis begins with clinical suspicion. The classic symptoms, however, can be mimicked by other conditions, including malignancies and systemic and pulmonary infections. Further, HIV co-infection has changed the clinical presentation of tuberculosis requiring an increased clinical suspicion to engage modern diagnostic techniques with a wider range of patients. tuberculosis can be identified in the sputum of an organism or other clinical samples. Radiology and other tests are supportive but do not make the diagnosis. If left Untreated, tuberculosis progresses to cause lung damage and death, but effective treatment results in cure in more than 90% of patients. Also, early diagnosis and appropriate treatment are essential for good outcomes.

REFERENCES

8. Community-acquired pneumonia and tuberculosis: differential diagnosis and the


27. Diagnostic Standards and Classification of Tuberculosis in Adults and Children. This official statement of the American Thoracic Society and the Centers for Disease Control and Prevention was adopted by the ATS Board of Directors, July 1999. This statement was endorsed by the Council of the Infectious Disease Society of America, September 1999. Am J Respir Crit Care Med. 2000 Apr; 161(4 Pt 1):736–95.


Corresponding author: Andriy Yu. Horoshchak, a.horoshchak@kmu.edu.ua

Manuscript was received on 25 October; accepted for publication on 26 December.

CITE AS: PETRO V, KUZYK ET AL, CHALLENGES IN MORPHOLOGICAL DIAGNOSIS OF TUBERCULOSIS BIOMEDICAL UPDATE, ISSUE 1, 2021